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On the near-equilibrium and near-frozen regions in 
an expansion wave in a relaxing gas 

By J.  G. JONES 
Royal Aircraft Establishment, Bedford 

(Received 14 August 1963) 

A weak expansion wave propagating in a relaxing gas is discussed with particular 
reference to the ‘near-equilibrium ’ and ‘near-frozen’ regions. The concept of 
bulk viscosity is used in conjunction with Burgers’s equation in the near- 
equilibrium region. The asymptotic equilibrium simple wave is modified by 
diffusive regions in the neighbourhood of the first and last rays, It is shown that 
in the case of a weak expansion wave, Chu’s asymptotic solution of the acoustic 
equation describes the wave-form for a finite time interval before convection 
effects become noticeable. In  the near-frozen region a characteristic perturbation 
method is used to describe the flow near the wave-front. 

1. Introduction 
This paper is concerned with the near-equilibrium and near-frozen regions of 

an expansion wave generated in a relaxing gas by impulsively retracting a piston. 
Previous work on the subject (together with the analogous problem of two- 

dimensional steady supersonic flow past a corner) includes analytical treatment 
by Chu (1958), Clarke (1960), and Moore & Gibson (1959), using the linearized 
equations of motion (acoustic approximation), neglecting the effects of convection. 
Numerical solutions of the full equations have been published by Wood & 
Parker (1958) and Appleton (1960). 

Here, analytical results are obtained which include the effect of convection, 
the near-equilibrium region (asymptotic solution for large time t )  being discussed 
using the concept of bulk-viscosity, and the near-frozen region (small values oft) 
using a characteristic perturbation method. 

If the terms in the equations of motion are linearized, thus neglecting the 
effects of convection, there results the acoustic approximation: 

where (x, t )  are respectively space and time co-ordinates, v is fluid velocity, r is 
relaxation time, and the constants a,,a, are respectively the ‘frozen’ and 
‘equilibrium’ speeds of sound. Equation (1) belongs to a class of equations, dis- 
cussed by Whitham (1959), in which the propagation speed a, defined by the 
highest-order derivatives (i.e. the ‘characteristic’ speed) is greater than the speed 
a, at which the main disturbance eventually travels. In  the case of an expansion 
wave, supposed generated at t = 0, the parameter r/ t  affects the nature of equa- 
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tion (1). For small 7/t, i.e. large enough values oft, the lower-order terms domi- 
nate. The resulting wave travels at  the equilibrium speed of sound (figure l), 
the higher-order terms in equation (1) producing a diffusive effect. The asymptotic 
shape of the wave, of ‘error-function’ wave-form, was derived by Chu (1958). 
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FIGURE 1. Acoustic approximation. 
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FIGURE 2. Expansion wave with relaxation. 

For large values of 7/t, i.e. small enough t, the high-order terms in equation (1) 
dominate and the flow is of ‘frozen’ character. The wave-front, or precursor, 
travels at  the frozen speed of sound a, (figure I). The low-order terms produce an 
exponential damping effect (Whitham 1959). 

When convection terms are retained in the equations of motion, a rather dif- 
ferent picture, described by Wood & Parker (19581, emerges. Figure 2 illustrates 
the flow-field schematically. The asymptotic solution for large values of t is the 
well-known (equilibrium flow) centred simple wave, or Prandtl-Meyer expansion, 
the wave-front travelling at the equilibrium speed of sound. Thus convection 
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eventually dominates the flow-field. The discussion of the near-equilibrium 
region will therefore be concerned with finding the way in which this equilibrium 
solution is approached. It will be shown that, in the case of weak expansion 
waves generated by retracting the piston with small velocity, Chu’s (1958) 
asymptotic solution of the linearized equations in fact is valid for a finite time 
interval during which t is large enough for the asymptotic approximation to 
be valid, and a t  the same time small enough for the effects of convection to be 
negligible. This solution will be used in establishing the correct asymptotic 
wave-form by providing a time interval in which the linearized solution can be 
matched with the convective solution, thus providing ‘boundary conditions ’ 
for the latter. The asymptotic solution is found as a solution of Burgers’s equa- 
tion, a method introduced by Lighthill (1956) for the treatment of shock-wave 
structure. 

For small values of t ,  the ‘frozen-flow ’ solution takes the form of a centred 
simple wave with the wave-front travelling at  the frozen speed of sound (figure 2). 
This solution is used to find the ‘near-frozen’ solution, which describes the 
flow field for slightly larger values of t, by providing an approximate value for 
the energy transfer from the ‘lagging’ to the ‘active’ mode of the gas. A 
characteristic perturbation method is used which gives, in particular, the 
equation of the out-going characteristics in the near-frozen region explicitly. 
In order to obtain simple analytical results attention is restricted to the flow 
near the wave-front. This problem has previously been considered by Wood & 
Parker (1958) (who use Lagrangian equations), and also by Napolitano (1960) 
who gives a mathemat,ical method for treating the near-equilibrium and near- 
frozen regions of an expansion wave in the case of an ideal dissociating gas, 
obtaining series expansions of the full equations which apply in the two regions. 
The method has, however, only been carried through to obtain an explicit solution 
in the case of the near-frozen flow. An expansion technique similar to Napolitano’s 
has also been given for near-frozen flow of an ideal dissociating gas by Stulov 
(1962). 

2. The relaxing gas 
Typical instances of relaxing gases are those with ‘lag’ associated with the 

vibrational modes of molecules, and with dissociation processes. We confine 
our attention here to the case of vibrational lag, although the solutions obtained 
have analogous counterparts in the case of dissociation. The equations describing 
a gas with a lagging mode have been described by Lighthill (1956) whose termi- 
nology we follow closely here. 

When the gas is in equilibrium, the portion c, of the specific heat at constant 
volume, cv, which is associated with the lagging mode can be written 

c&, = (Y - 1) (2) 

where T is temperature, and y is the ratio of specific heats at  constant pressure 
and constant volume. Then, in the case of a vibrational mode, 

F,(T) = (Tz/T)2e-T~’T, (3) 
6-2 
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where 
of equilibrium states a small change in internal energy e is given by 

is ‘excitation temperature’. When the gas goes through a succession 

The energy in the vibrational mode, el per unit mass, is thus related to translation 
energy gp/p by the equation 

ez = El(P/P)t ( 5 )  

where E W P )  = N T ) .  ( 6 )  

Except in the case of extremely slow changes in p/p the energy in the lagging 
mode is not given by equation (5) but has to be found from the ‘rate equation’ 

where r is the relaxation time. The validity of equation (7) is discussed by 
Lighthill (1956). 

In  general r is a function of temperature and pressure, but in the case of a 
weak expansion wave it has been assumed that the variations in pip are suffi- 
cient,ly small for r to be regarded as constant. 

3. Near equilibrium flow 
3.1. Equations of motion 

The equations of  motion, in the case of near-equilibrium flow (neglecting effects 
of viscosity and heat conduction) have been presented by Lighthill (1956) in the 
form 

Dp/Dt + p div v = 0, (8) 

e = -  l.13 
Y - 1 P ’  

where eij is the ‘rate of strain’ tensor 

eij = - 1 (-+%) avi 
2 ax+ ax, 

and pij is the stress tensor 

Here, A is the dilatation sate 
~ i j  = ( P - P ~ A )  6ij- 

A = eIIK 

(12) 

(using summation suffix convention) and, when A > 0, for example, the thermo- 
dynamic pressure p = (y-  1)pe remains, owing to the effect of ‘lag’, slightly 
greater than &pKK by an amount pv A. ,uv is the ‘ bulk-viscosity ’. 
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By comparing the structure of a weak shock wave in a relaxing gas with that 
of a weak shock wave in a viscous gas Lighthill (1  956) showed that the appropriate 
value for the bulk-viscosity is? 

Here the amplitude of the wave is small, and the values of a,, a, are those corre- 
sponding to conditions in the undisturbed gas. The same result (equation (15)) 
has been deduced by Landau & Lifshitz (1959) by considering a periodic com- 
pression and expansion wave in a relaxing gas using linearized equations. In  
the case of near-equilibrium flow (which occurs when the relaxation time is 
small relative to the period of the motion) they show that the form of the 
stress tensor is identical with that arising in the theory of viscous flow, the 
viscosity being replaced by the bulk-viscosity given by equation (15). 

In  the case of waves of small amplitude (corresponding in our problem to 
small piston velocity) a simplification can be introduced (Lighthill 1956) in 
the equations of motion by neglecting terms involving the squares of the (small) 
velocity amplitude and effective frequency (the latter being proportional to 
mean velocity gradient). For a weak expansion wave it will be verified in $0 3.4 
and 3.5 that a sufficient condition for this approximation to be applicable 
throughout the flow field, except in a ‘boundary layer’ in the neighbourhood of 
the piston, is that the piston velocity v1 satisfy the inequality 

,U, = pT(fXL -a:). (15) 

v1 < (a% --a$. (16) 

Making the above simplification Lighthill (1 956) derived Burgers’s equation 

in conjunction with t’he equation 

where 
a/(? - 1) - 6v = const. = a,/(y- 11, 

u = a+v-a,, 

x = x-a,t, 

and the fluid velocity and local equilibrium speed of sound are now denoted by 
v and a respectively, a, being the speed of sound in the undisturbed medium. 
u is then the ‘excess wavelet velocity’ and X is a co-ordinate in a frame of 
reference moving in the same direction as the wave at  speed a,. S is the ‘diffusi- 
vity’, related to bulk viscosity by the equation 

6 = p,/p = T ( U 2  -a:). (21) 

Equations (18) and (19) can be used to express v and a as linear functions of u. 
All results concerning wave propagation can thus be completely defined in terms 
of the variable u. 

Burgers’s equation (17) is the simplest equation including both non-linear 
convective terms and (linear) diffusive terms. In  the rest of this section it is 

Dr D. A. Spence has pointed out to the author that equation (15) can be derived 
directly from the rate equation (7)  without the need to consider any particular flow 
process such as a. shock or sound wave. 
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used to discuss the modification, in the near-equilibrium region, of an equilibrium- 
flow centred simple wave. In  the Appendix it is used to discuss the propagation 
of a non-centred expansion wave in a region where diffusive effects can every- 
where be considered as a small perturbation of convective effects. 

3.2. Alternative forms of boundary conditions 
The expansion wave (figure 2) can be generated by retracting a piston impul- 
sively with constant velocity. The boundary conditions are then understood 
be given in the form of the prescribed velocity on the piston path. However, 
there are other ways of prescribing ‘boundary conditions’, all of which are exactly 
equivalent as far as the flow field in the neighbourhood of the wave is concerned. 
For example, the velocity distribution at a fixed point (the initial position of the 
piston) can be prescribed as a function of time in the form of a step-function. 
If we consider the linearized solution of the problem this formulation is taken 
as an approximation to that with prescribed velocity on the piston path. Alter- 
natively, the problem can be considered as an ‘initial value’ problem; the velocity 
distribution a t  t = 0 (the moment when piston retraction starts) can then be 
prescribed as a function of position in the form of a step-function. This approach 
proves to be more useful when we consider the near-equilibrium asymptotic 
solution. 

Not only are the flow fields identical in the neighbourhood of the wave in the 
above alternative cases, but asymptotically, for large values oft, the correspond- 
ing flow fields become identical for all values of 2. Consequently, in what follows 
we will refer to whichever formulation proves most convenient. 

3.3. Asymptotic equilibrium expansion wave 

Asymptotically, for large values oft, the flow becomes of equilibrium character, 
and the equations of motion simplify to the equations of thermodynamically 
reversible flow. Suppose that the equilibrium flow equations give an adequate 
description of the flow for t 2 t,. Then there is an intermediate time interval 
0 < t < t, separating the equilibrium region from the given initial conditions, 
supposed prescribed at  t = 0. This intermediate region takes the form of a (bound- 
ary layer’ within which higher-order equations must be used. The main problem 
in finding asymptotic solutions is the determination of suitable boundary con- 
ditions for the asymptotic equations within the region in which they apply. 
In  the present case it will be shown by a physical argument that the ‘boundary 
layer ’ has a negligible effect on the asymptotic equilibrium solution. 

Suppose that the ‘initial conditions’ are prescribed as a step function in the 
form 

The equilibrium equations hold for t > t ,  (figure 3). At t = t ,  we can find values 
x,, x2 of 2 (figure 3) such that 

1 for x < x2, 
for x > x, 

at t = t l ,  v = {:, 
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(a sufficient condition for this is that x, > a,t,, x2 < -a ,  t,, where a, is the 
frozen speed of sound in the undisturbed gas). 

In  seeking an asymptotic solution we look at  the flow field on such a large 
scale that the flow conditions a t  t ,  (equation (23)) can be regarded as a small 
perturbation of the given initial conditions (equation (22)). The dominant feature 
of the conditions at  t = t,, as far as the asymptotic solution is concerned, is that 
outside an interval x, 2 x 2 x2 the initial conditions have not been perturbed, 
and for large enough t the interval (xl, xz)  is negligibly small. Moreover, the dis- 
tinction between t = 0 and t = t ,  is negligible. 

3 x 

1 1  

FIGURE 3. Asymptotic equilibrium expansion wave. 

The above argument shows that the asymptotic solution for large t can be 
obtained by using the homentropic flow equations in conjunction with initial con- 
ditions given by equation (22) as an adequate approximation to the intermediate 
conditions which exist at  t = t,, described in part by equation (23). That is, the 
‘boundary layer’ has negligible effect. Wood & Parker (1958), in deducing the 
form of the asymptotic wave, use this result implicitly, without discussion. 

The asymptotic solution for large t obtained in this way is simply the equili- 
brium-flow centred simple wave, or Prandtl-Meyer expansion, with wave-front 
travelling at the equilibrium speed of sound, 

In  the above argument it has been assumed that ‘initial conditions ’ have been 
prescribed in the form of a step function at  t = 0. A similar argument shows that 
the result is also true in the case of boundary conditions prescribed on the piston 
path (or a t  x = 0).  In  this case the equilibrium flow equations hold for x 3 x1 
and the ‘boundary layer ’ is the region between the piston and the station x = x,. 

3.4. The ‘ boundary-layer ’ problem for the near-equilibrium region 

Just as there exists a station x1 such that the equilibrium flow equations describe 
the flow field adequately for x 2 x,  there exists a station xi where x i  < x, such 
that the near-equilibrium flow equations describe the flow field adequately for 
x B xi. Within the ‘boundary layer’ 0 < x < xi (where x = 0 is the approximate 
position of the piston), higher-order equations must be used. It will now be 
shown that, in the case of a weak expansion wave, Chu’s (1958) solution of the 
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linearized equations can be used to relate the near-equilibrium flow asymptotic 
solution to the prescribed boundary conditions. 

Chu (1958) considered the case of an expansion wave, with boundary conditions 
prescribed at  the approximate piston position x = 0, using linearized equations 
equivalent to equation (1). He was in fact concerned with a gas with chemical 
reactions, but his results are equally applicable to the case of a lagging internal 
mode. He deduced the asymptotic solution 

(34) 

X 

0 

“ t  
I 
I 
I 
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Diffusvs 
like t 2  

FIGURE 4. Chu’s asymptotic solution of the linearized equations. 

which is an error-function wave-form travelling at speed a,, with the effect of 
diffusion being to spread the initial discontinuity over a length increasing 
like {6x/a,}g, where 6 is ‘diffusivity’, given by equation (31). This asymptotic 
wave is illustrated in figure 4. An analogous asymptotic form was derived by 
Clarke (1960) in the case of two-dimensional steady flow of a dissociating gas 
past a corner. 

Although the effect of convection has been neglected in the derivation of 
equation (24), in the case of a weak expansion wave it will now be shown that it 
gives a valid description of the wave-form in part of the flow field. On the one 
hand t must be large enough to ensure the near-equilibrium character of the flow 
field. The condition for this is that 

7/t  < 1. (25 
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On the other hand, at an instant t when the wave-form is given by equation (24), 
t must be small enough for the diffusive effect, spread like t*, to dominate the 
convective wave-spread, or ‘fanning’, which gives a wave-form of length 
proportional to t. As the length of the diffusion-dominated wave-form in equa- 
tion (24) is proportional to (St)* and the convective effect gives rise to a wave of 
length v,t this latter condition can be written in the form 

v,t < (&).r 

or 211 < {(./t) (a% -a:))*. (26) 

Combining inequalities (25 )  and (26) it follows that equation (24) will give a 
valid description of the wave-form in a time interval 

7 < t < 7(& - a2,)/vi. (27) 

v, < (a: -a;)&. (38) 

(29) 

Such an interval will only exist if the piston velocity is subject to the restriction 

The inequality (27) can be put in the alternative form 

aoT < X < U o 7 ( U L  -U;)/V;.  

In  the case of a weak expansion wave the station xi can be chosen to satisfy 
inequality (as), the linearized solution of the problem thus holding throughout 
the ‘boundary layer’ 0 Q x Q xi. At x i  the linearized solution takes the form of 
equation (34). It remains to find a convective solution for the ‘outer’ region 
xi < x which matches the linearized solution, i.e. takes the form of equation (24), 
a t  xi. It will be shown in the following section that such a solution can be found 
as a solution of Burgers’s equation satisfying initial conditions at t = 0 in the 
form of a step function (equation ( 2 2 ) ) .  Of course, this will provide a mathematical 
solution for the complete region 0 < x but in the interval 0 < x < xi this solution 
is not physically meaningful in the present context and must be replaced by 
the solution of the linearized equations (Chu 1958; Clarke 1960) which take full 
account of the relaxation process. In  the following section we use the solution of 
Burgers’s equation derived thus to discuss the way in which the asymptotic 
equilibrium simple wave-form is approached. 

3.5. Near-equilibrium frow for a weak expansion wave 

As explained in the previous section, the asymptotic solution for large values oft, 
in the case of a weak expansion wave, is obtained from the solution of Burgers’s 
equation (171, with initial conditions given by equation (22). The required 
solution has been given by Lighthill (1956): 

where 
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and the other variables involved have been defined in $3.1. Lighthill was 
primarily concerned with the compression case (ul > 0) leading to shock wave 
formation. Here we are concerned only with the case u1 < 0. 

We first verify that, in the case of a weak expansion wave, equation (30) takes 
the form of equation (24) in the time interval given by inequality (37)' thus 
matching the present solution with Chu's solution of the linearized equations as 
described in the previous section. 

I 

I 
I 
I 

I 
I 
I 

u =o I 
I 
I 

I 

-* t 

g' 
FIGURE 5. Centred simple wave. 

In  the time interval defined by equation (27) we have the following inequality 
throughout the wave: 

(except for a negligible region near the wave-centre X = 0 )  and thus equation 
(30) becomes approximately 

x = 0(6t)& > UIt 

(31) _ _ _ ~  ul(l - erf [X / (S t ) . t ] }  
(1 -erf[~/(26t)&]}+exp (ulX/6)(1 -terf[~/(26t)g]}' 

U =  

Also, since X = O(St)*. we have 

U1X/6 = O(u,t/Gtt+) < 1, 

thus exp(u,X/6) + 1, 

and hence equation (24) results. 
For the rest of this section we consider the asymptotic form of equation (30) 

as t+ co. In  the first place it is convenient to consider conditions on the ray 
9 = at. Then, writing 

(32) U ( X ,  t )  = E(a, t), 
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} (36) 

equation (30) becomes 

, for 0 > a > ul, 

Using the asymptotic expansion 

> (36) 

the following asymptotic forms can be found. 
To a first approximation (large t )  equation (33) reduces to the equilibrium 

simple wave produced in an ideal fluid by the initial conditions (equation (33)) ,  
viz . 

0, for a > 0, 

u,, for u, > a, 
a,  for 0 > a > u,, (35) 

confirming the result deduced from physical arguments in $3 .3 .  The simple 
wave-flow field in the above variables is illustrated in figure 5. 

The next approximation gives 
s *  

6 2a-u, 
G(a,t) + 4a 1+-7- 

t a  (a-u,) 
1 s *  

‘A a-u, (%) exp( -g), for a > 0, 

, for 0 > a > ul, 

( ~ 1 i : ) ~ t ) ) ,  for u1 > a. 1 u, 1 + -  - exp -____ 

1 [ 
( &J ( I 

This approximation does not help us to find the shape of the wave-form for 
given large t ,  as it is evidently non-uniformly valid near a = 0 and a = u1 where 
the additional terms become infinite. However, it is useful in that it shows that 
the effect of diffusivity on the solution falls off more slowly (like l / t )  inside the 
wave (0 > a > ul) than outside it, where the decay is exponential. 

The behaviour of this approximation near the end rays, a = 0 and a = u,, 
suggests that we examine in more detail the flow near these rays. In order to 
investigate flow conditions in the neighbourhood of the leading ray, a = 0, 
we consider the path in the ( x ,  t)-plane such that 

a(t/2S)* = const. = A, say. 
Since X = at we have 

X = A(%.%)*. 

(37) 

(38) 

Now X is the distance of a point ahead of the wave-front, so that as t -+ co the 
distance of the path A = const. from the wave-front increases like t i .  At the same 
time, however, a -+ 0.. Writing 

equation (33) reduces to the asymptotic form (for A fixed, as t .+ co) 
G(A, t )  = u(a, t ) ,  (39) 

n-8 { I  - erf ( - A ) }  
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The term in square brackets gives the shape of the wave-front as a function 
of A .  From equations (38) and (40), then, it follows that u decays like t-4 near 
a = 0 and that the neighbouring region within which the effect of diffusivity is 
significant is spread over a length increasing like t*. A similar result holds near 
the end ray a = ul. By comparison with the results expressed in equation (36), 

Diffuses 
Near-equilibrium ./ 1 like tt 

Q' simple wave 

11 A 

I Asymptotic wave-form Wave-front 
I for large t I - 
I f 
l a0 t 
I 

%X 

- -4 
utt 

f 
I 
I 

a0t 

Enlargement 
of  wave-front 2 4 = - -  - 

tll 

FIGURE 6. Asymptotic solution for large t .  

which indicates exponential decay outside the wave and decay like t-l inside the 
wave, it can now be seen that the near-equilibsium region, for large values oft, is 
concentrated in regions near the end rays (figure 6). The t-* decay in these regions 
explains the singularities in the coefficients of t-l at a = 0 and a = u1 observed 
in the asymptotic expansion given in equation (36). Since the length of the wave 
(from first to last ray) increases like t as t -+ 00 (figure 6) the lengthof the diffusive 
regions tends relatively to zero. 

I n  order to find the shape of the wave-form near the wave-front for large t 
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it is convenient to approximate to equation (40) by considering A small. The 
result can be written in the form 

(where a -+ 0 like t-.f as t --> a). In particular, putting a = 0 in equation (411, 
the decay a t  the leading ray is obtained. The slope of the wave-form near the 
wave-front ( A  small) can also be deduced, from equation (41), as 

This result may be contrasted with the slope outside the diffusive region, where 
the simple-wave approximation, equation (35), is valid: 

(aulax), = l/t. (43) 

The information contained in equations (35) and (40) has been combined to give 
the shape of the asymptotic wave-form in figure 6. 

3.6. Near-equilibriumJIow for a strong expansion wave 

In  the case of a weak expansion wave it has been shown in the previous section 
how the asymptotic equilibrium-flow simple wave is modified in the near- 
equilibrium region. Here we use these results tentatively to suggest the probable 
form of the near-equilibrium region in the case of a strong expansion wave. 

In  the first place it seems likely that, although the quantitative results 
obtained for a weak expansion wave no longer apply directly, the general result 
that the equilibrium simple wave is modified in the near-equilibrium region by 
diffusive bands in the neighbourhood of the first and last rays still holds. If we 
make this assumption quantitative results can again be obtained. For, in the 
neighbourhood of the leading ray for instance, the velocity amplitude of the wave 
is small and Burgers’s equation is again valid. Moreover, we seek a solution of 
Burgers’s equation which joins the flow conditions in the gas at  rest upstream 
of the wave to the flow conditions in the equilibrium simple wave behind the 
leading diffusive band. But the latter conditions are identical with those in a 
weak simple wave, therefore the solution required is exactly that already ob- 
tained for a weak expansion wave, the wave-form being given by equation 
(40) (and illustrated in figure B), the value of 6 being taken as that appropriate 
to flow conditions in the undisturbed gas. 

An analogous argument applies in the case of the diffusive band centred on the 
last ray of the equilibrium simple wave. Here, flow conditions are small perturba- 
tions of (equilibrium) conditions in the gas behind the wave. So again Burgers’s 
equation can be used to join the flow conditions in the equilibrium simple wave 
just  upstream of the last ray to the flow conditions in the gas downstream of the 
wave. Moreover, the weak expansion wave again provides the necessary diffusive 
wave-form, the value of 6 now, however, referring to conditions in the gas behind 
the wave. 

To summarize, it appears that in the case of a strong expansion wave the results 
illustrated in figure 6 can be simply adjusted to give the flow field in the near- 
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equilibrium region. The equilibrium flow solution is modified by diffusive bands 
exactly as in figure 6, except that in the leading band the value of 6 is taken as 
that appropriate to conditions in the undisturbed gas, and in the trailing band 
the value of 6 is taken as that appropriate to the (equilibrium) conditions behind 
the wave. 

4. Near frozen flow 
The known frozen flow solution (very small values of t )  is now used to find 

the flow field in the near-frozen region (slightly larger values of t ) .  In  order to 
obtain simple analytical results attention is restricted to the flow near the 
wave-front. 

4.1. Equations of motion 

For very small values of t the equations of motion reduce to the equations of 
thermodynamically reversible flow, the ratio of specific heats of the gas being 
that ( y ’ )  applicable to the ‘active’ mode only. This is the ‘frozen’ flow region. 
The solution of the equations in the case of an impulsively retracted piston is a 
centred simple wave (Wood & Parker 1958; Napolitano 1960). 

It is the flow field for slightly larger values oft ,  the ‘near-frozen’ region, that 
concerns us here. The method employed is to use the frozen flow simple wave to 
provide a first approximation for the energy transfer from the lagging to the 
active mode. The equations of motion are those for the active mode with energy 
transfer from the lagging mode regarded as external heat addition. These equa- 
tions have been derived in convenieiit characteristic form by Kantrowitz (1958) 
and will be used in what follows with some differences of notation (designed to 
avoid using the concept of ‘temperature’). 

The frozen speed of sound (a function of 2 and t )  is given by 

Writing 
a, = WPIPP. 

n‘ = f / ( y ’ -  l), 

(44) 

(45) 

we introduce ‘Riemann invariants ’ 
r = +(n’a, + v), s = B(n’a, - v). (46) 

The equations of motion can then be written in the form (Kantrowitz 1958) 

where q is the energy transferred to the active mode, 

a+ a a 
- =-+@+a,)- 
st at ax 

and - 8- = -+(v-a,) a - a 
at at ax 
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are derivatives along characteristics, and 

~a a _ -  Dt - at+"- ax  
is the substantial derivative. 

95 

(51) 

4.3. Approximate evaluation of energy transfer 
The energy transfer dq to the active mode is given by 

dq = -de, (54") 

where (7) 

In  the frozen flow region t/r is so small that the right-hand side of equation (7) is 
negligible : 

where suffix f refers to frozen flow. Thus 
{deL/dtlf = 0, (53) 

(54)  (ellf = const. = El@/ij), 

where a bar denotes conditions in undisturbed gas at  rest. 

obtained from equation (7) in the form 
The approximate energy transfer in the near-frozen (nf) region can now be 

= 7-1 [(El (P/P))f - E' ( F / P ) I >  
using equation (54). 

( 5 5 )  

4.3. Frozen and near-frozenJIowJields 

In the undisturbed gas at rest (conditions denoted by a bar) we have 

(56 )  

r = r,,, s = so = &n'a,. (57) 

r = 7 = Qn'a,, s = 3 = 1 '- 2n am. 

The frozen simple wave solution (denoted by suffix zero) can be written in 
the form 

so is thus constant throughout the flow field and ro is constant along out-going 
(straight) characteristics (figure 7). In  order to obtain simple analytical results 
we restrict attention to flow near the wave-front and regard small terms, 
O( 1 - 2r0/n'c(m)2, as negligible. The frozen wave-front travels at  speed 

(ax/at),o = a,. (58) 

(59) 

The outgoing characteristics T,, travel at  speed 

( a ~ / a t ) , . ~  = (a, + v),, = am - &arn( 1 + n') (1 - 2ro/n'a,), 

(from equations (46) and (57)). 
Suppose now (figure 7) that the frozen wave-front and the frozen characteristic 
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ro reach position x at times to(x) and t (x ,  ro) respectively. Then from equations 
(58) and (59) it follows that 

dx +to@)+(--) 1 +n' (l-$)X, 
2a, n a ,  

to first order in (1 - 2ro/n'a,). Equation (60) is the approximate equation for the 
frozen outgoing characteristics. 

We also have 
{PI& = ( F / P )  (%&J2 + (FIP)  (1 - (1 - aro/nl&4). (61) 

I 

FIGURE 7. Near-frozen centred expansion. 

From equations (55 )  and (61) there results 

To first order in (1 - 2r0/n'Z,) the particle paths have equations 

x = const., 

hence integration of equation (63) gives 

(62) 

(63) 

(using equation (60)). 
In  the near-frozen flow the frozen characteristic ro (figure 7 )  will be perturbed, 

although its initial ( t  = 0) slope will remain unchanged. Suppose this perturbed 
outgoing characteristic has equation 

7 = const., (65) 

ro = ro(7). (66) 

where 7 and ro are related by the equation 
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Then we can take parametric co-ordinates ( x , ~ )  in the near-frozen expansion 
wave. First, flow conditions at the point A(x, 7)  (figure 7 )  will be determined, and 
then the position of this point in the (x, t)-plane will be found to a first approxi- 
mation. 

Using the approximate form (63) for the particle paths, equation (51) becomes 

D/Dt = (apt),. (67) 

Equation (47) can now be written in the form 

To first order we have 
d x ,  7) + q(x7 To). (69) 

Equations ( 5 2 ) ,  (62), (64) and (68) thus give, to first order in (1 -2r0/n’Gm), 

ro(q) being defined in equation (66). Integrating equation (70) ,  we obtain 

To the same order of approximation it follows from equation (48) that 

s ( x , ~ )  = Z = &z’Z,. (73 )  

Equations (71) and (72) determine all flow variables in the near-frozen flow field 
at the point A(x, 7). 

The velocity of the characteristic 7 = const. at  A(x, 7) is 

(ax/at), = a&, 7) + V(X, 7) 

= (ax/at)ro + (1 + lln’) k ( X 7  7) -r0(7)19 (73) 

where ( a ~ / a t ) , ~  is given by equation (59). Substituting from equation (71) and 
integrating, the time t(x, 7) at which the characteristic = const. reaches position 

(using equation (60)). Equation (74) (the approximate equation of an outgoing 
characteristic in the near-frozen flow field) locates the point A(x, 7) in the (2, t ) -  
plane and thus completes the parametric solution. It can be seen from equation 
(74) that, apart from the wave front, the near-frozen flow characteristics travel 
with greater velocity than their counterparts in the frozen simple wave (owing to 
the transfer of energy from the lagging to the active mode). 

7 Fluid Meoh. 19 
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5. Conclusions 
The near-equilibrium and near-frozen regions of an expansion wave propa- 

gating in a relaxing gas have been discussed. For a wave generated by impulsively 
retracting a piston at  time t = 0 these regions occur respectively for large and 
small values oft. 

The asymptotic equilibrium flow field for large values of t  is a centred simple 
wave with wave-front travelling at the equilibrium speed of sound. In  the case 
of a weak expansion wave (piston retracted with small velocity) it has been shown 
by means of a solution of Burgers’s equation that in the near-equilibrium region 
the simple wave flow is modified by diffusive regions in the neighbourhood of the 
first and last rays. The resulting wave-form is illustrated in figure 6. The diffusive 
regions are spread over a length of the wave proportional to t t  and the diffusive 
effect decays like t-g.  Since the total length of the wave is proportional to t 
these diffusive bands have negligible effect on the shape of the wave for very large 
values oft. It has been shown that, whereas the slope (aujaz), of the wave-form 
in the simple wave region is t-l, the slope at  the leading ray, within the near- 
equilibrium region, is 3(nt)-l. This near-equilibrium asymptotic solution, 
dominated by convection, is to be contrasted with the asymptotic wave-form 
obtained by Chu (1958) using the acoustic approximation (and thus neglecting 
convection effects) (figure 4). This takes the form of an ‘error-function’ diffusive 
region, of length proportional to t) ,  centred on the equilibrium Mach line. How- 
ever, it has been shown that, in the case of a weak expansion wave, this type of 
wave-form exists for a finite interval of time before convection effects become 
noticeable. 

The asymptotic solution for a weak expansion wave has been used to suggest 
the probable form of the near equilibrium regions in the case of a strong expan- 
sion wave (piston retracted with large velocity). The diffusive regions centred on 
the first and last rays of the simple wave are in this case described using values of 
the ‘diffusivity’ corresponding respectively to conditions in the gas in front of 
and behind the wave. 

In  the Appendix, the near-equilibrium flow associated with an initial non- 
centred expansion wave-form, in which gradients are sufficiently small for the 
effects of convection to dominate the whole flow field, is discussed. It is shown that 
in this case the diffusive decay at  first is everywhere like t-l. Asymptotically, 
however, the wave takes the form of a centred simple wave with diffusive 
decay like t-* in the neighbourhood of the first and last rays as before. 

In  the case of near-frozen flow (figure 7) a characteristic perturbation method 
has been employed to describe the flow near the wave-front taking the initial 
frozen simple wave as a first approximation. The solution representing the 
initial decay of the frozen wave is expressed parametrically in terms of a variable 
which is constant on the perturbed outgoing characteristics. The equations of the 
approximate characteristics have been found explicitly. Apart from the wave- 
front, which is unperturbed, the characteristics propagate with greater velocity 
than in the frozen region owing to the transfer of energy from the lagging mode 
to the active mode. 
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Appendix. Near-equilibrium non-centred expansion wave 
In  3 3 Burgers’s equation was used to find the near-equilibrium asymptotic 

approximation to a centred expansion wave for large values of t .  In  this Appendix 
we consider an initial non-centred expansion wave-form with gradients suf- 
ficiently small for the near-equilibrium assumption to hold for all values of t. 
Burgers’s equation is then used to discuss the development of such a waveform 
with time, the diffusive effects being regarded as small perturbations of the 
convective effects. In  9 A 1 it  is assumed that the curvature of the initial wave- 
form is everywhere small. In  §A2 the wave-form for large t is discussed. In  $ A 3 
the effect of a discontinuity in the slope of the initial wave-form is considered 
briefly. 

The solution of Burgers’s equation (17)  for an arbitrary initial ( t  = 0) wave-form 
is given by (Lighthill 1956) 

A 1. Curvature of initial wave-form everywhere small 

4x9 t )  = 11/12, (75) 

where X - Y  
= t 

I 2  = Sm exp ($) d Y ,  
-m 

P ( X )  Y , t )  = S r n u ( Y , 0 ) d Y -  ( X -  -~ Y)2 
1- 3t ’ 

(77) 

and the variables involved have already been defined in $3.1. 
We use the fact that in near-equilibrium flow T is effectively small, and hence, 

from equation (21), diffusivity 6 is small. In  this case, as shown by Lighthill 
(1956)) equation (75) can be approximated by means of the ‘method of steepest 
descents ’. Lighthill evaluated the first approximation for general flows, and 
the second approximation in the neighbourhood of shock waves. We here find the 
second approximation in the case of an expansion wave. 

The first approximation to equation (75) is (Lighthill 1956) 

u(x ,  t) = (X - Y,)/t, (79) 

where Y,, is the value of Y for which F (equation (78)) is greatest for given values 
of X and t. Then Ynr is given by 

F’(YJ1) = - U(T$~,  0 )  + (X -YJ f ) / t  = 0. (80) 

Provided no shock waves appear in the flow field this solution is identical with 
that of pure convection theory, 

u = const. on wavelets, X -ut = const. (81) 
This first approximation then describes an equilibrium simple wave, and the 
next term in the approximation, which is to be found, describes a small perturba- 
tion of it. The lines X - ut = const. are sometimes called the ‘ sub-characteristics ’ 
of the solution. 

7-2 
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Lighthill (1956) explains how the presence of shock waves in the flow field 
is associated with the function F (equation ( 7 8 ) )  having several local maxima 
for given ( X , t ) .  The second approximation in the neighbourhood of a shock 
wave is found by considering contributions to the function u ( X , t )  (equation 
( 7 5 ) )  from each of these maxima. In the case of an expansion wave, a single 
maximum, at Y = Ynf (say), dominates the value of the integrals in equation 
( 7 5 ) .  The method of obtaining higher approximations in this case using ‘steepest 
descents’ is described by Erdelyi (1956). 

The condit,ion that Y = Ym gives a maximum of F requires: 

i.e. 
P(qlI) = - U’(X) f )  0) - ljt < 0 ,  

1 +tur(Ylf) 0) > 0. 

But, as Lighthill shows, simple convection theory gives 

where 
1 +tu‘(Y,,, 0) = u‘(Y31, O)/u‘(X, t ) ,  

U’(X, t )  = au(x, tyax. 

(82) 

(83) 

So, as we are considering the small perturbation of a simple wave expansion, 
equation (83) is evidently satisfied. 

In  the neighbourhood of Y = Y,I we have the Taylor expansion 

F(P) = F(Ylf) + w”(qv) ( y - ynl)2 + F,( Y ) ,  

Fl( Y )  = (1 /3!) F”’(Yp1) ( Y - YM)3 + (1/4!) F(iv) (Yaf) ( Y  - 1:7,1)4 + . . . . 
(86) 

( 8 7 )  

Substituting this expansion into equations (76) and ( 7 7 )  gives (this procedure 
is discussed by Erdelyi 1956) 

where 

x - YJ2 F(iV) ( Y$2) P”’ ( YJ2 ) x p L + ( t  _______ 4!6 3! 6t ) (F”(YM)}2 2:-- +...I,  (88 )  

So, to a second approximation, from equation ( 7 5 )  

(90) 

The first term represents the basic simple wave. The second term, representing 
the effect of diffusivity, relates the value of u at ( X ,  t )  to the shape of the initial 
wave-form a t  the point X = YT2, i.e. at  the point of the initial wave-form that 
lies on the sub-characteristic through (S, t ) .  Note that the second term in equa- 
tion (91) vanishes at  t = 0 (since the first term itself satisfies the prescribed initial 
conditions). For large values of t the diffusivity contribution decays like t-l. 
However, equation (91) does not give a valid description of the diffusive decay 
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as t -+ GO. This point is discussed in the following section. As is also clear from the 
basic equation (17), the effect of diffusivity (given by equation (91)) is propor- 
tional to the second derivative (or curvature) of the initial wave-form. In order 
that the second term in equation (91) be small compared with the first term, as is 
required for this small perturbation expansion to be valid, it is necessary 
that U”(Y,~, 0) 6 be small. 

The effect of large curvature in the initial wave-form is briefly discussed 
in 5 A3 below by meaiis of the extreme case of a wave-form with a discontinuity 
in slope. 

A2. Asymptotic wave-form for large t 

The approximate wave-form described by equation (91) is obtained by taking 
the first terms of an expansion in powers of the (small) quantity 6 at a fixed value 
oft. This approximate form is non-uniformly valid for large values oft. For large 
t ,  as has been shown in 53.3, the wave-form is dominated by the conditions of 
uniform flow upstream and downstream of the wave, and asymptotically the 
(non-centred) expansion wave may be regarded as a centred expansion wave, the 
effect of convection being to concentrate wave curvature in the neighbourhood of 
the end rays. The t-l decay described by equation (91) is analogous to that already 
found (equation (36)) for the inside of a centred wave. However, as t -+ co 
and the asymptotic centred wave-form is approached, diffusive regions will 
persist in the neighbourhood of the first and last rays, and the t-4 decay, described 
in 5 3 of the main text, will take place in these regions. 

A3. Initial wave-form with discontinuity in slope 

This case has been mentioned by Lighthill (1956). He considers an initial wave- . -  

form given by 
for X > 0, 

u(X ,O)  = (93) 

where H < 0. The decay of u on the wave front X = 0 can be obtained from 
equation (75) and is given by (Lighthill 1956) 

3 
((1 - Ht)*+ (1 - H t )  

u(0,t) = (93) 

In  this case u decays like t-h. This is to be contrasted with the decay like t-1 
which occurs in the case of a wave-form with a small curvature. The effect of 
diffusivity when the initial wave-form contains a discontinuity in slope is in fact 
the same as that already found (§ 3.5) at  the leading and end rays of a centred ex- 
pansion wave; the diffusive effect decays like t-4 and is spread over a length 
increasing like t4. 
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